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Abstract

In this thesis, a frequently used maximum likelihood method is expanded to take into account a
more accurate statistical description of the excess noise, electronic noise and dead-time effects of
a data acquisition system commonly used for LIDARs. The method is used to combine signals
registered simultaneously in two channels, a process known as gluing. The original method and
several proposed improvements are implemented so as to achieve gluing of analogue and photon
counting measurements from the Barcelona Raman LIDAR. A complete statistical description of
the related processes is derived and the performance of the new methods evaluated with the help of
simulations and using real data.
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A mamá y papá.
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Òscar Porqueras León Bachelor’s Thesis in Physics

1 Introduction

Light Detection and Ranging (LIDAR) acquisition systems are widely used to read signals in two
channels simultaneously: analogue and photon counting. Their combination (gluing) allows for a
significant increase in the dynamic range of the system, achieving high linearity for strong signals
– thanks to the analogue channel – as well as high sensitivity for weak signals – thanks to the
photon-counting mode.

Several gluing methods have been proposed, usually correcting the dead-time effects of the photon
counting and then fitting the analogue signal to the photon counting [11, 21, 26, 32]. The main
objectives of this thesis are implementing the method introduced by Veberic [32] so as to achieve
precise gluing of Barcelona Raman LIDAR data, and proposing and evaluating several improvements
and approximations which take into account a full statistical description of the dead-time affected
photon-counting signal registration and summation, besides improving the description of the excess
and electronic noises for the analogue signal.

2 Theoretical background

2.1 The Cherenkov Telescope Array (CTA)

Much of the radiation that reaches our planet is of thermal origin and under extreme conditions it
can reach up to a few keV. However, higher energy radiation also reaches Earth and hence must be
of non-thermal origin. The best-known example are the cosmic rays produced by cosmic particle
accelerator processes.

When high-energy cosmic rays reach the atmosphere, a cascade of subatomic particles – known
as an extensive air shower (EAS) – is produced. Some of the relativistic charged particles in the
EAS are sufficiently energetic to travel through the atmosphere – a dielectric medium – faster than
the phase velocity of light in it. As a result, electromagnetic radiation known as Cherenkov light is
produced, similar to the sonic boom of a supersonic aircraft.

The Imaging Atmospheric Cherenkov Technique (IACT) is a method to detect high-energy gamma
rays in the range of 50 GeV to 50 TeV by imaging the Cherenkov radiation produced by the EAS
and reconstructing the particle shower. Several IACT systems have been operating and studying
high-energy gamma rays for years, such as FACT [8], HESS [16], MAGIC [20] and VERITAS [33].

The Cherenkov Telescope Array (CTA) is a project to build the largest ground-based gamma-ray
observatory in the world, which will consist of two arrays of IACT systems in the northern and
southern hemispheres with a combined number of almost 100 telescopes [1, 31]. The northern array,
located at the Roque de los Muchachos Observatory, will focus on the study of extra-galactic objects
at the lowest energy range from 20 GeV to 20 TeV and the southern array, located southeast of
the European Southern Observatory’s Paranal Observatory in Chile, will cover the full energy range
from 20 GeV to 300 TeV and concentrate on galactic sources.

The CTA Consortium is composed of over 1500 members from more than 150 institutes in 25
countries, including the Universitat Autònoma de Barcelona (UAB) in Spain.

The atmospheric conditions at a given moment of observation affect the measured Cherenkov
light and are the main source of systematic uncertainties of IACT systems [13]. In order to tackle
this issue, CTA opted for the development of Raman LIDARs, with the aim of providing continuous
atmospheric monitoring through precise aerosol extinction characterisation within time scales shorter
than one minute, during which the CTA telescopes change target or wobble [7, 14, 29, 30, 34].
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2.2 Light interaction with the atmosphere

Electromagnetic radiation that travels through the atmosphere is subject to mainly two interactions:
absorption and scattering.

Absorption occurs when molecules in the atmosphere absorb incident photons of a given wave-
length. Water, carbon dioxide, and ozone are the three main atmospheric constituents which cause
absorption in the photon wavelength range of interest for the IACTs (300–700 nm).

Scattering is a physical process where small particles or large gas molecules present in the at-
mosphere interact with part of the electromagnetic radiation, causing it to be redirected from its
original path and diffused in all directions. Scattering can be elastic – when the photon energy is
conserved – and inelastic – when a change in photon energy occurs.

There are three main types of elastic scattering according to the size of the particles in the
atmosphere causing it: Rayleigh, Mie and non-selective scattering, which occur when particles are
much smaller, about the same size and much larger than the wavelength of the incoming radiation,
respectively.

Inelastic scattering of photons by matter is known as Raman scattering. Here, the molecules
change their vibrational and/or rotational state through a Raman process. In consequence, as op-
posed to elastic scattering, there is both an exchange of energy and a change in the light’s direction,
hence the scattered photons are shifted in frequency. This shift is characteristic for the scattering
molecule.

2.3 Raman LIDARs

Light Detection and Ranging (LIDAR) is a remote sensing method capable of determining range-
resolved optical properties of a medium by using light in form of a pulsed laser and measuring the time
it takes to be reflected and return to the receiver. Light is typically reflected through backscattering,
as opposed to specular reflection as from a mirror.

A LIDAR’s working principle is the same as that of a RADAR, except that instead of radio waves
[28] another part of the electromagnetic spectrum is used – from infrared to ultraviolet [5].

LIDAR has numerous applications in multiple fields, including meteorology, archaeology, survey-
ing, geography, geology and robotics. It has even reached our pockets by being featured in Apple’s
latest products for photography, AR and 3D modelling purposes.

A Raman LIDAR is a type of LIDAR instrument used to measure the vertical profiles of aerosols
and water vapour within the atmosphere. The pulsed light is backscattered as a result of its inter-
action with the atmosphere and then collected with a telescope. These systems mainly consist of a
laser, a mirror, receiving optics and detectors, a data acquisition system, and further electronics.

Raman LIDARs can operate at various wavelengths simultaneously if the laser emits at more than
one wavelength. In addition to signals at the laser wavelengths due to elastic backscattering, Raman
LIDAR systems are also able to detect signals at different wavelengths which emerge from inelastic
(Raman) scattering. At photon wavelengths of around 300–700 nm, usually Raman scattering lines
of N2 or O2 are considered, for they are the dominant scattering particles at this range.

The main advantage of a Raman LIDAR over a simple elastic-backscatter LIDAR is that the
extinction coefficient may be measured, rather than inferred under assumptions on the scattering
particle size.

2.4 The Barcelona Raman LIDAR

The Barcelona Raman LIDAR pathfinder for CTA-North (BRL) is one of the two prototypes devel-
oped for atmospheric characterisation at the future Northern Site of the CTA. BRL is a joint project
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between several CTA members: IFAE-BIST, UAB & IEEC-CERES, INFN-Padova and University
of Nova Gorica, Slovenia. The BRL design, construction and testing has been going on for several
years, with Dr. Markus Gaug as head of the group.

The BRL, built in Barcelona, was installed at the CTA-North site in mid-February 2021 and is
currently in the commissioning and evaluation phase. The final CTA-North Raman Lidar is planned
to be built at the Observatorio del Roque de los Muchachos (ORM) by the end of 2023.

2.4.1 Components, Design and Characteristics

As shown in Figure 1, the BRL system consists of the following main components: an Nd:YAG
pulsed laser, a telescope, a light guide, a polychromator unit, four photomultipliers (PMT) and a
data acquisition unit [14].

Figure 1: Schematic setup of the BRL. Adapted from [15].

The laser operates at wavelengths of 355 nm and 532 nm, which are frequency doubled and tripled
from 1064 nm. The corresponding Raman wavelengths due to N2 are 387 nm and 607 nm.

The laser beam exits along the optical axis of the receiving mirror in a coaxial configuration
thanks to two dichroic guiding mirrors, which also absorb the 1064 nm wavelength.

The telescope consists of a 1.8m diameter receiving mirror. At its focus, a wide liquid light
guide (LLG) transports the backscattered light to a polychromator unit. The polychromator then
separates the four wavelengths (the two laser wavelengths due to elastic backscattering, and the two
corresponding Raman wavelengths) and light is detected with four PMT units.

Finally, the electric pulses generated by the PMT units are registered by data acquisition units
from LICEL,1 which digitise the signals.

The LICEL units can read the signals in two channels: analogue, useful for the near range because
the signal intensity is high, and photon counting (PC), useful for the far range where the intensity is
much weaker. Modern acquisition units such as those provided by LICEL combine a dual acquisition
mode in which the signal is recorded simultaneously in both analogue and PC modes.

Combining analogue and PC detection, which is often called gluing, allows for a significant increase
in the dynamic range of the system, achieving a dynamic range of up to 107 : 1. No other amplifiers
with such high dynamic ranges are available.

1www.licel.com
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Although both data records can be analysed separately, gluing of analogue and photon-counting
measurements is often advantageous for data analysis. This process however is not trivial due to
the fact that both channels present several drawbacks: the photon-counting channel is subject to
dead-time effects and the analogue channel is subject to electronic noise, excess noise and saturation.

2.4.2 Signal digitisation and gluing

In the LICEL units, such as those used for the BRL, analogue detection of the PMT current and
PC are combined in one acquisition system. The LICEL units consist of a fast transient digitiser,
a discriminator for PC detection and a multichannel scalar combined with preamplifiers for both
systems. For analogue detection, the signal is amplified according to the input range selected and
digitised by an A/D converter [2].

The analogue voltage signal may be converted into a digital signal via an A/D converter with
good linearity, but weak signals cannot be efficiently detected [10]. On the contrary, the PC mode is
able to detect weak signals by counting the pulses generated by single photons.

Nevertheless, the signal intensity frequently exceeds the maximum counting rate of PC, which
results in saturation of the photon-counting rate. In that case, non-linear errors introduced from
pulse pile-up appear. The PC channels of the LICEL units can be modelled as non-paralysable or
cumulative counters [21, 32], which introduce a so-called non-extending dead time τ . The original
process – which in the case of the BRL generates the input photons – is often assumed to be a
Poissonian process [6, 32] and for the purposes of this thesis it will be assumed to be so.

The analogue channel also presents several challenges which arise from the photon detection
process:

When a photon reaches the PMT, Ne photoelectrons are emitted with a Poissonian probabil-
ity distribution. The photoelectrons set off a chain of n Poissonian amplification processes which
introduce a total gain α = α1 · · ·αn, where αi denotes the gain of each amplification step. The
total amplification process can be approximately described by a Poisson process with mean αNe

and variance α2F 2Ne, where F 2 = F1
2 · · ·Fn

2 is called the excess noise factor and Fi
2 is the excess

noise factor introduced by each amplification step [9]. For LICEL units such as those in BRL, F has
been found to be around F ≈ 1.06 [22, 23]. The pedestal or baseline of the signal is dominated by
electronic noise, which is approximately Gaussian with variance γ2.

The analogue signal may hence be described by the joint probability distribution of the Poissonian
amplification process and the Gaussian electronic noise. In consequence, for a high number of
photoelectrons, the central limit theorem ensures that the analogue signal converges to a Gaussian
with variance γ2 + αF 2Ne [9]. Removing the original Poissonian contribution to the variance of the
emitted photoelectrons Ne yields α ε2Ne, where

ε2 := F 2 − 1. (2.1)

The analogue channel is also sensitive to saturation due to the amplifiers involved in the analogue
detection process and saturation of the A/D converter when exceeding its maximum input voltage.

2.5 Dead-time-distorted processes

The dead time is the time interval τ which follows a registered event during which a counting system
is unable to record further events. In general, two types of dead times are usually distinguished,
which differ in the response of the system to pulses that arrive during a dead time: Non-extendable
dead times are unaffected, while extendable dead times are prolonged by τ , measured from the last
arrival time [19]. In Figure 2, the behaviour of these two types of dead times is illustrated.
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t
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dead time
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τ = 3u
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Figure 2: Schematic representation of the output count due to the effect of extendable (system A)
and non-extendable (system B) dead times τ . Instead of the original 5 pulses, A would register 3
counts, whereas B would register 4. Time is expressed in arbitrary units “u” represented by the grid.

The counting losses caused by the dead-time effects depend on the statistics of the incoming
pulses. In this thesis, we will assume that the input pulses follow a Poisson distribution with a mean
of pi observed photons for each time slot i, distorted by a non-extendable dead time τ . For a time
origin choice at random, this process is called an equilibrium process [25] and will be referred to as
such henceforth.

The exact distribution, i.e. the probability of observing a specific number of events for a Poisson
process modified by dead time, along with its moments, is non-trivial to obtain. Still, it has been
found by Müller [24] through renewal process theory and more recently by Omote [27] through
complex integration techniques.

For the equilibrium process, the mean number of counts or mean count rate µ in a sampling time
∆t is given by

µ =
pi

1 + δpi
, (2.2)

where δ = τ/∆t [32].
Defining the truncated mean for k counts, tk := pi(1 − kδ), the probability Wk of observing k

counts is given by

Wk := Wk(pi, δ) =
1

1 + δpi
[Rk−1 − 2Rk +Rk+1 +∆k] , (2.3)

where

∆k =


0 if k ≤ K − 1,

(K + 1)(1 + δpi)− pi if k = K,

pi −K(1 + δpi) if k = K + 1,

(2.4)

with K = ⌊1/δ⌋ determining the upper limit on possible counts, where ⌊x⌋ denotes the largest integer
smaller than and not equal to x. Rk := Rk(tk) is fully expressed as

Rk(x) = U(x)
k−1∑
j=0

(k − j)Pj(x) = U(x) [(k − x)Q(k, x) + kPk(x)] , (2.5)

where Pk(x) is the probability distribution for the number of counts k of a Poisson process with
mean x, given by

Pk(x) =
xke−x

k!
(2.6)
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and Q(k, x) = Γ(k, x)/Γ(k) is the regularised upper incomplete Gamma function, with the upper
incomplete Gamma function

Γ(k, x) =

∫ ∞

x

uk−1e−udu (2.7)

and Γ(k) = Γ(k, 0) is the Gamma function.
For a positive integer k, the Gamma function may be written as Γ(k) = (k − 1)!, and the upper

incomplete Gamma function may be written as

Γ(k, x) = (k − 1)! e−xek−1(x), (2.8)

where ek(x) =
∑k

j=0 (x
j/j!) is the exponential sum function [35].

Finally, U(x) is the Heaviside unit step function defined as:

U(x) =

{
1 if x > 0

0 if x ≤ 0.
(2.9)

The exact expectation for the equilibrium process is given by expression (2.2) and the exact
variance for the equilibrium process is given by

Vδ(pi) =
2

1 + δpi

K∑
k=0

[(k − tk)Q(k, tk) + kPk(tk)] +H(µ−K), (2.10)

where H(x) := x(1− x) is the hump function.
When δpi ≪ 1, the variance asymptotically behaves as

Vδ(pi) ≈
pi

(1 + δpi)3

[
1 +

(δpi)
2

6pi(1 + δpi)

(
6 + 4δpi + (δpi)

2
)]

. (2.11)

These expressions may be found in [24] and [25], but the notation introduced by Veberic [32] will
be mainly used in this thesis.

3 Analysis & Methods

The implementation of all proposed methods was carried out using Python code developed in con-
junction with Dr. Markus Gaug, Anna Campoy and Roger Grau. For more details, see appendix
A.3.

3.1 Likelihood-based method introduced by Veberic

In this section, the gluing method introduced by Veberic [32] will be explained.

3.1.1 Statistical model

Suppose we have analogue and photon-counting signals consisting of N data points each. These data
points are often called bins. Let i be the subindex denoting the i-th bin.

The transformation of the input photons pi into the analogue signal ai is modelled as a linear
transformation

ai ∼ A(pi) := αpi + β, (3.1)

6
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where α is a parameter related to the PMT and amplifier gain, and β is an offset related to the
pedestal or electronic baseline of the analogue signal.

The variance Var(ai) of the analogue signal is modelled as being constant,

Var(ai) = γ2, (3.2)

where γ describes the electronic noise.
The probability P (ai|pi) of observing an analogue signal ai given pi input photons is modelled as

a normal distribution with mean A(pi) and variance (3.2):

P (ai|pi) = Nai(A(pi), γ
2) =

1√
2πγ2

exp

(
−(ai − A(pi))

2

2γ2

)
. (3.3)

For the PC channel, the mean number of counts µi in a sampling time ∆t is given by

µi = C(pi) :=
pi

1 + δpi
, (3.4)

where δ = τ/∆t is the fraction of dead time versus sampling time (see section 2.5).

The probability P (mi|pi) of observing a photon count mi given pi input photons is given by Wmi

– see equation (2.3) – but is approximated by a Poisson distribution (2.6) with parameter C(pi):

P (mi|pi) = Pmi
(C(pi)) . (3.5)

In LIDAR measurements, data points ai and mi are usually obtained through summation of Ns

consecutive LIDAR returns, where Ns is a fixed parameter for each LIDAR measurement called num-
ber of shots. This is possible thanks to the fast laser-pulse repetition rates, since the atmosphere is
assumed not to introduce substantial sources of additional variance during the short data acquisition
time.

The models described in equations (3.1)–(3.5) are considered invariant with respect to the sum-
mation to some degree if the parameters are transformed in the following way:

α → α, β → β

Ns

, γ2 → γ2

Ns

, δ → Nsδ. (3.6)

However, for large photon numbers, the variance of the equilibrium process (2.10) depends on Ns

in a non-linear way and the approximation loses validity. Veberic proposes to evaluate the variance
at NsVδ(ps/Ns), where ps is the sum of the arrived photons for Ns photon-counting measurements,
although alternatives to this approach will be discussed in the following sections.

3.1.2 Initial values

Gluing parameters α, β, γ2, δ are obtained through likelihood maximisation, but it is first necessary
to obtain initial values for the maximisation.

The initial estimates for α, β, γ2 are obtained by using the data points (ai,mi) in the weaker
signal region, where a linear relationship between both signals is assumed. The initial values are
obtained through least-squares minimisation of

χ2
min = min

α,β

∑
i∈I

[ai − A(mi)]
2 , (3.7)

7
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where I denotes the indices of the data points used. About 10% of the data points are usually
adequate.

The initial value for the parameter γ2 is obtained from the residuals of expression (3.7):

γ2
init =

χ2
min

M − 2
(3.8)

where M = n(I) is the number of data points used.
The initial estimate for δ is obtained by fitting the photon counts mi to a constant in the stronger

signal region, where the photon counts are saturated to the upper limit due to dead-time effects, i.e.

mmax ≈ lim
pi→∞

C(pi) =
1

δ
⇒ δinit =

1

⟨mi⟩i∈J
(3.9)

where J denotes the indices of the data points used. About 30% of the data points are usually
adequate.

The resulting initial prediction for mi as function of ai is given by C
(
(A−1(ai)

)
.

3.1.3 Maximum likelihood

In statistics, the parameters of an assumed probability distribution can be estimated with observed
data by a method known as maximum likelihood estimation. The method consists in maximising a
likelihood function (or simply likelihood) L so that, under the assumed probability distribution, the
observed data is most probable.

The likelihood for Veberic’s model is given by

L =
N∏
i=1

Li(ai,mi, pi), (3.10)

where Li is the joint probability of observing an analog signal ai and a photon count mi given pi
input photons for the i-th data point:

Li(ai,mi, pi) = P (ai|pi) · P (mi|pi) = Nai(A(pi), γ
2) · Pmi

(C(pi)) . (3.11)

Since likelihood functions usually consist of products of other functions, it is often useful to define
an alternative function called deviance as D = −2 logL, so that the products may be expressed as
summations thanks to the properties of logarithms. Likelihood maximisation is therefore equivalent
to deviance minimisation.

The corresponding deviance D for the likelihood (3.10) is given by

D = −2 logL =
N∑
i=1

(−2 logLi(ai,mi, pi)) =
N∑
i=1

Di(ai,mi, pi), (3.12)

where

Di(ai,mi, pi) = −2 logNai

(
A(pi), γ

2
)
− 2 logPmi

(C(pi))

= log
(
2 πγ2

)
+

(ai − αpi − β)2

γ2
+ 2 log (mi!) +

2 pi
1 + δpi

− 2mi log

(
pi

1 + δpi

)
(3.13)

The parameter γ2 is not subject to minimisation but kept fixed at the initial estimate found
through expression (3.8). If minimisation is attempted by including γ2, convergence is rarely achieved.
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This is a drawback of this procedure which we will attempt to solve through the proposed improve-
ments in section 3.2.

Deviance minimisation is achieved by locating an extremum, which satisfies the following condi-
tions:

∇D = 0 ⇔ ∂D
∂α

= 0,
∂D
∂β

= 0,
∂D
∂δ

= 0,
∂D
∂pi

= 0 ∀i ∈ {1, . . . , N}. (3.14)

Since only the i-th term of D depends on pi, we have that

∂D
∂pi

=
∂Di

∂pi
(ai,mi, pi) = 0 ∀i ∈ {1, . . . , N}, (3.15)

that is, we obtain N equations each depending only on parameters α, β, δ and pi.
The proposed minimisation method consists in splitting the procedure in two parts: An inner

part dealing with parameters pi and an outer part dealing with parameters α, β and δ.
For each iteration of the outer part, i.e. for some intermediate values α̃, β̃, δ̃, a minimisation

of parameters pi is achieved by solving equations (3.15), which reduce to fourth-order polynomial
equations in pi. An analytical solution for the i-th equation can hence be found as the suitable
polynomial root, although for practical reasons a numerical solution is more efficient. Using Newton’s
method:

p
[n+1]
i = p

[n]
i −

D′
i

(
p
[n]
i

)
D′′

i

(
p
[n]
i

) (3.16)

where D′
i

(
p
[n]
i

)
:=

∂Di

∂pi
(ai,mi, p

[n]
i ), D′′

i

(
p
[n]
i

)
:=

∂2Di

∂pi2
(ai,mi, p

[n]
i ) and p

[0]
i is a suitable approximation.

In our case, p
[0]
i was found by inverting relationship (3.1) between ai and pi, namely

p
[0]
i =

1

α̃
(ai − β̃). (3.17)

The iterative process (3.16) is carried out until the stopping criterion
∣∣∣p[n+1]

i − p
[n]
i

∣∣∣ < ϵ is met,

where ϵ = 1.5 · 10−8 in our case.
Note that the extreme values of a function may also be found at the boundary and not be a zero

of the derivative, and so the extremum over pi found through Newton’s method must be compared
to the value of Di at the boundary, pi = 0.

The outer part of the minimisation starts with the initial estimates for α, β, δ found in sec-
tion 3.1.2. For each iteration, the inner part is first performed to determine a value for parameters
pi, so that the deviance is contracted into a form D(ai,mi) which only depends on α, β and δ. The
values of these three parameters are then updated by a step of some non-linear minimisation proce-
dure. We found the limited-memory BFGS-B (L-BFGS-B) and Nelder-Mead optimisation algorithms
to be adequate in most cases.

The procedure is run until a stopping criterion is met and the final values of α, β, δ and pi are
obtained.

In order to perform the iteration from expression (3.16) the first two partial derivatives of Di

with respect to pi need be computed. We have calculated and simplified them to

∂Di

∂pi
=

2 (αpi + β − ai)α

γ2
− 2mi

(1 + δpi)pi
+

2

(1 + δpi)
2 , (3.18)

∂2Di

∂pi2
=

2α2

γ2
+

2 (1 + 2 δpi)mi

(1 + δpi)
2p2i

− 4 δ

(1 + δpi)
3 , (3.19)
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for which the usage of an algebraic manipulator such as SageMath2 is highly encouraged and will be
useful for checking more complicated expressions in the upcoming sections.

Lastly, note that the initial estimates for α and β were obtained through a methodology similar
to the gluing procedure proposed by LICEL manufacturers [21] and other researchers [11]. An
improvement of these gluing parameters through likelihood maximisation is hence to be expected
and will be discussed in section 4.

3.1.4 Corrections

Due to the acquisition system characteristics, two corrections allow for an improvement of the gluing
procedure results:

The first correction has to do with the relative offset between the analogue and PC traces: due
to the different path of the input signal through the LICEL system for both channels (see [2] for
further detail), it is reasonable to expect an offset between the traces. This may be addressed by
introducing a shift between the analogue and PC bins before running the likelihood maximisation
procedure, i.e. re-indexing the N data points as (ai+k,mi), where k ∈ {−(N − 1), . . . , N − 1} is the
shift and i = 0, . . . , N − k − 1 if k ≥ 0, i = −k, . . . , N − 1 if k < 0.

The second correction has to do with the data point distribution: in general, the data sets
from LIDAR systems contain many more data points in the weaker signal (lower ai) region, rather
than covering the whole range uniformly. As a consequence, the parameters obtained through the
likelihood maximisation process are subject to bias. To deal with this issue, Veberic [32] proposes
to divide the N data points in M non-overlapping and non-empty groups, which will be weighed
accordingly to compute the deviance. The corresponding weights {wj}Mj=1 are defined as

wj =
N

NjM
, (3.20)

where Nj is the number of data points in the j-th group, so that the weights be inversely proportional
to the group point density.

A new weighed deviance D̃ may then be defined as

D̃(ai,mi, pi) =
M∑
j=1

wjD̃j(ai,mi, pi), (3.21)

where D̃j is the contribution of the data points in the j-th group to the deviance of expression (3.12).
In other words, if Ij is the set of indices of the data points in the j-th group, then

D̃j(ai,mi, pi) =
∑
i∈Ij

Di(ai,mi, pi), (3.22)

where
M⊔
j=1

Ij = {0, . . . , N − 1} and Di is given by expression (3.13).3

The grouping of the data points may be performed using many techniques, but we will use fan-like
groups radiating from the lower right corner of the smallest square that contains all data points.

2www.sagemath.org
3The symbol ⊔ denotes the disjoint union, since the sets of indices of the data points groups form a partition of

{0, . . . , N − 1}.
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3.2 Improvements on the likelihood-based method

In this section, I will propose several improvements to the gluing method introduced by Veberic.
For all the proposed methods, the initial estimates for parameters α, β, γ2 and δ are obtained in

the same way as in section 3.1.2. The deviance minimisation procedure is also completely analogous
to that of sections 3.1.3 and 3.1.4, although two extra parameters γ2, ε will be added to the outer
part of the minimisation.

3.2.1 Modified Gaussian parameters

One of the drawbacks of the original likelihood-based method is the constraint upon γ2, which must
be kept constant throughout the minimisation process to achieve convergence.

A solution to this obstacle arises from a reformulation of the electronic noise model, which Veberic
[32] supposed to be the cause for a constant variance, Var(ai) = γ2, of the analogue signal. In reality,
we have no reason to suspect a constant variance since the analogue signal variance is related to
the photon detection and amplification process, whose variance depends upon the number of input
photons pi.

We will therefore model P (ai|pi) = Nai

(
A(pi), γ

2 + ε2α2pi
)
, where the variance has been modified

to take into account the excess noise factor (see section 2.4.2),

Var(ai) = γ2 + ε2α2pi. (3.23)

The initial estimate for ε2 emerges from relationship (2.1).
Defining

G(pi) := −2 log
[
Nai

(
A(pi), γ

2 + ε2α2pi
) ]

= log
(
2 π
(
γ2 + ε2α2pi

))
+

(ai − αpi − β)2

γ2 + ε2α2pi
, (3.24)

we have that the deviance for this model is given by D =
N∑
i=1

Di

(
ai,mi, pi

)
, where

Di = G(pi)− 2 logPmi
(C(pi)) . (3.25)

We have computed the first two partial derivatives of Di with respect to pi, which can be found
in appendix A.1.

3.2.2 Deviance using Wk

The actual probability distribution for an equilibrium process is given by expression (2.3). Thus far,
we have only considered its approximation by a Poisson distribution (2.6) with parameter C(pi).

We shall now consider a model where the probability P (mi|pi) is given by (2.3). We also
model P (ai|pi) = Nai

(
A(pi), γ

2 + ε2α2pi
)
.

First, we will only consider the case of no summation of consecutive LIDAR returns, Ns = 1,
since the behaviour of the model with respect to summation is complex and will be further discussed
and evaluated later.

The deviance D for this model is given by D =
N∑
i=1

Di

(
ai,mi, pi

)
, where

Di = G(pi)− 2 logWmi
. (3.26)

11
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Denoting k ≡ mi, the first two partial derivatives of Di with respect to pi are:

∂Di

∂pi
=

∂G

∂pi
− 2

Wk

∂Wk

∂pi
, (3.27)

∂2Di

∂pi2
=

∂2G

∂pi2
+

2

Wk
2

(
∂Wk

∂pi

)2

− 2

Wk

∂2Wk

∂pi2
. (3.28)

We have computed the first two partial derivatives of Wk with respect to pi, which can be found
in appendix A.1.

3.3 Treatment of summations

In LIDAR measurements data points ai and mi are usually obtained through summation of Ns

consecutive LIDAR returns. This has the unfortunate consequence that, for Ns > 1, the probability
distribution of observing a given photon count mi given pi input photons is no longer given by
expression (2.3), since the observed photon count is not given by an equilibrium process but by the
sum of Ns equilibrium processes.

Therefore, the random variable Mi that describes the observed photon count is given by:

Mi =
Ns∑
j=1

Zij (3.29)

where Zij are random variables with a probability distribution given by (2.3), i.e. equilibrium
processes. In other words, P

(
Zij = k

)
= Wk.

The expected value of Mi is given by

E(Mi) =
Ns∑
j=1

E(Zij) (3.30)

due to the linearity of the expected value.
It is reasonable to assume that Zij are independent and identically distributed (iid), since thanks

to the fast laser-pulse repetition rates the atmospheric conditions can be expected to remain ap-
proximately constant during the short data acquisition time. We will hence assume that Zij have
probability distributions given by (2.3), with parameters pi and δ.

Under this assumption, the expected value of Mi can be easily computed,

E(Mi) =
Ns∑
j=1

pi
1 + δpi

=
Nspi

1 + δpi
= NsC(pi), (3.31)

and the variance of Mi is given by

Var(Mi) =
Ns∑
j=1

Var(Zij) =
Ns∑
j=1

Vδ(pi) = NsVδ(pi), (3.32)

where Vδ is given by expression (2.10), since the variance of the sum of random variables is equal to
the sum of each of their variances when the random variables are uncorrelated, which in particular
is true for independent random variables.4

4Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ). X,Y independent ⇒ Cov(X,Y ) = 0 (i.e. X,Y uncorrelated).

12
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3.3.1 Sum of Wk–distributed random variables modelled as a Wk–distributed random
variable

Given that the expectation and variance of Mi scale linearly with the number of shots, ideally
we would hope that the resulting probability distribution of Mi would be given by an equilibrium
process (2.3) with modified parameters. Unfortunately, proving or disproving this fact happens to
be a complex endeavour in which we did not succeed. In spite of this, we have studied the behaviour
of the distribution of Mi according to the parameters pi and δ in order to hypothesise a model.

A first hypothesis could be that the parameters pi, δ of random variables Zij also scale linearly
with the number of shots and Mi has a probability distribution given by (2.3) with parameters Ns ·pi
and δ/Ns.

Nonetheless, although the resulting distribution would clearly have an expectation given by (3.31),
it can be checked that its variance would not be (3.32). As a counter-example, for δ = 0.1, pi =
100, Ns = 500 we have that NsVδ(pi) ≈ 113.53 whereas Vδ/Ns(Ns · pi) ≈ 37.73.

More complex expressions for the parameters of the presumed probability distribution of Mi

should therefore be contemplated.

3.3.2 Sum of Wk–distributed random variables modelled as a random variable with
other probability distributions

Another possible approach consists in seeking a better approximation for the distribution of Mi than
the Poissonian distribution, for its mean Ns · C(pi) coincides with the expected value of Mi (3.31)
but its variance does not coincide with (3.32).

Despite this, the Poissonian distribution is an adequate approximation for some range of the
parameters pi, δ [32] and so we could consider a mixed approach where Mi be approximated by some
other distribution when the Poissonian loses validity.

A candidate for this approach, although not a discrete probability distribution, is the normal
distribution, since it offers several benefits: it is easier to work with than the Wk distribution, its
mean and variance can be set independently unlike the Poisson distribution, and from the central
limit theorem the Poisson distribution can be approximated by the normal distribution when its rate
parameter is sufficiently large.

In this case, we model the probability P (mi|pi) = Nmi

(
C(pi), Vδ(pi)

)
.

We also model the probability P (ai|pi) = Nai

(
A(pi), γ

2 + ε2α2pi
)
, like in section 3.2.1.

The deviance D for this model is given by D =
N∑
i=1

Di

(
ai,mi, pi

)
, where

Di = G(pi) + log (2πVδ) +

(
mi − C(pi)

)2
Vδ

. (3.33)

We have computed the first two derivatives of Di (and in particular of Vδ) with respect to pi,
which can be found in appendix A.1.

Furthermore, the standard ways to handle under-dispersed and over-dispersed count data include
using generalised Poisson and negative binomial models, respectively [4, 12, 17, 18]. We could
therefore consider an approach where we used a negative binomial distribution when the sample
mean is smaller than the sample variance, a generalised Poisson distribution when the sample mean
is larger than the sample variance, and a Poisson distribution when the sample mean and variance
are approximately equal.

13
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The probability mass function of a random variable X with a negative binomial distribution
NB(n, p) is given by

P (X = k) =

(
k + n− 1

n− 1

)
(1− p)kpn. (3.34)

Several generalised Poisson models and parametrisations exist. We will consider a model usually
called GP-0 or GP-1 [36]. The probability mass function of a random variable X with a generalised
Poisson distribution is given by

P (X = k) =
λe−(λ+αk)(λ+ αk)k−1

k!
, (3.35)

where λ > 0 and α is usually restricted to (0, 1) so that the distribution is normalised [3].

4 Results and discussion

4.1 Data

The data used was obtained in two different times and locations:
The first data files were taken while BRL was under testing at UAB, Barcelona. The sampling

frequency for the analogue channel was 20MS/s and the number of shots Ns = 500.
The other data files were captured after BRL was installed at the CTA-North site at La Palma

during the 2021 Cumbre Vieja volcanic eruption. The sampling frequency for the analogue channel
was 40MS/s and the number of shots Ns = 1001.

Each data set consists of a CSV file with two columns, corresponding to the analogue and PC
values for each bin (row). The files include a header with information about their corresponding
number of shots and sampling frequency.

The analogue data points ai for each bin i are given in mV units. Admittedly, ai should have
units of voltage× time, since the digitisation process integrates the input signal over a sampling time
∆t. Thus, if the values are multiplied by the sampling time ∆t expressed in ns (50 ns and 25 ns for
the Barcelona and La Palma data files, respectively), ai would be properly expressed in pVs. Even
so, it is commonplace to express the analogue signal in units of voltage, since the sampling time is
constant for all bins, so these will be the units used across this whole section.

Due to the data acquisition configuration of the BRL team, a custom correction of the relative
offset between the analogue and PC traces has already been implemented to obtain the data sets
and will hence not be discussed here.

4.2 Initial values

An example of the initial estimates found for one data set of each type can be seen in figure 3. Note
that the data points ai,mi have been scaled by 1/Ns so that the initial values from different data
sets may be compared. The initial estimates will be scaled accordingly in their respective likelihood
maximisation processes.

The χ2 of the initial prediction C(A−1(ai/Ns)), along with the residuals mi −C(A−1(ai/Ns)) are
also included in figure 3. These parameters will be used to determine whether and which of the
proposed gluing methods improve upon this prediction.

For the models where an initial value of ε is needed, it is found as εinit
2 = Finit

2 − 1 = 0.1236,
where Finit = 1.06 is the estimated value of the excess noise of the PMT introduced in section 2.4.2.
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(b) Data set “20210921.194500 1001shots” captured in La Palma.

Figure 3: Initial values obtained for a data set of each type.

4.3 Original method by Veberic

The number of weighed fan-like groups to compute the deviance was M = 100 in all cases. We found
that a lower number of groups resulted in too many data points per group and either the method
did not converge or the resulting fits had higher χ2 values and residuals, whereas a higher number of
groups resulted in too few data points per group and the resulting fits also showed higher χ2 values
and residuals.

An example of the gluing parameters and prediction found using the likelihood-based method
by Veberic for one data set of each type can be found in figure 4. The χ2 value and the residuals of
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Òscar Porqueras León Bachelor’s Thesis in Physics

the prediction are also included.
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Figure 4: Gluing fit obtained through Veberic’s method for a data set of each type. α, β and γ are
expressed in mV and δ is dimensionless.

A significant improvement of the fit parameters is achieved through the implementation of this
method: in comparison to the initial prediction from figure 3, the χ2 of the fit is reduced by factors
of 23 and 6 and the maximum residual values are reduced by factors of 4 and 2, respectively. Fur-
thermore, the residuals appear to be more symmetrically distributed around zero, instead of showing
a clear bias toward positive values as in the initial prediction from figure 3.

These improvements are consistently observed for other data sets: the χ2 values are reduced by
factors ranging 5–25, and the maximum residual values are reduced by factors ranging 2–5.
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Òscar Porqueras León Bachelor’s Thesis in Physics

4.4 Modified Gaussian parameters

For this model, the gluing parameters α, β, γ and δ were initialised using the obtained values in
section 4.3 in order to accelerate convergence. The number of weighed fan-like groups to compute
the deviance was also M = 100 in all cases.

An example of the gluing parameters and prediction found using the modified Gaussian parame-
ters from section 3.2.1 for one data set of each type can be found in figure 5. The χ2 value and the
residuals of the prediction are also included.
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Figure 5: Gluing fit obtained through the modified Gaussian parameters method for a data set of
each type. α, β and γ are expressed in mV and δ, ε are dimensionless.

Again, in comparison to the initial prediction from figure 3, a significant improvement of the fit
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parameters is observed: the χ2 decreases by factors of 20 and 6 and the maximum residual values are
reduced by factors of 4 and 2, respectively. The residuals also seem more symmetrically distributed
around zero. These improvements are also observed in other data sets: the χ2 decreases by factors
ranging from 5–25, and the maximum residual values decrease by factors ranging from 2–5.

The fit parameters (χ2 and residuals) obtained for the original method by Veberic and the modified
Gaussian parameters method consistently show relative differences below 10%. In addition, the γopt
and εopt values obtained in the modified Gaussian parameters method are, respectively, 8–9 and 12–15
orders of magnitude lower than those obtained from the initial estimates. These two observations
indicate that, in the used data sets, the correlated fluctuations due to the input photons do not have
a significant effect on the variance of the signals in comparison to the electronic noise.

As a consequence, the assumption of a constant variance for the analogue signal made by Veberic
can be considered an acceptable approximation for these data sets, since the gluing fit parameters are
substantially improved with respect to the initial estimates and no further improvement is observed
by considering a dependence on the number of input photons.

4.5 Simulating and approximating the Mk distribution

In order to evaluate the behaviour of the probability distribution of the Mk random variable from
equation (3.29), we have conducted over 1000 simulations with different parameters pi, δ and Ns

that cover and expand the range of values that appeared in the implementation of the previous
sections. Every simulation of Mk was obtained by generating Ns samples of size S = 105 of a
Wk(pi, δ) distribution and summing the produced values, which results in a sample of size S of the
random variable Mk. The simulation of the probability distribution is then obtained by creating the
corresponding density histogram of the Mk sample.

After conducting the simulations, we have attempted to fit the simulated probability distribution
by using the distributions described in section 3.3. In figure 6, four examples of the simulations, fits
and fit parameters can be seen.

We have observed that the Mk distribution is generally under-dispersed. Consequently, the neg-
ative binomial fit has only been possible for a small range of parameters. The generalised Poisson
fit overcomes this issue since it may be used for either over-dispersed and under-dispersed data.
However, due to the numerical behaviour of the exponential and factorial functions on its probability
distribution, the computation of the corresponding probabilities has only been possible for k ≲ 100
approximately. Since the generalised Poisson has been fitted by likelihood maximisation, fitting has
been possible for higher k values,5 though unfortunately unsuccessful for piδ ≫ 1.

The Wk and Gaussian fits were possible for the whole parameter range and presented the best
fit parameters: χ2 values between 10−4 and 10−8, R2 values over 0.95. In the extreme example of an
almost completely saturated PC channel (figure 6d), the Gaussian fit was also plotted continuously
to emphasise that the fitted distribution is in truth a (continuous) probability density function.

Finally, the fitted Poissonians were considered with parameters NsC(pi) as in the gluing process.
Notice that, as opposed to the generalised Poissonian, the representation was possible for high k
values, since the used Python functions have been programmed to consider binomial or normal
approximations whenever necessary – we did not find libraries with such approximations for the
generalised Poissonian. The relative differences between the χ2 and R2 values of the Poissonian fit
and the Wk and Gaussian fits have been found to increase as piδ does. In consequence, we have
observed that the Poisson distribution may not be considered an appropriate approximation for
piδ ≳ 1, as can be seen in the examples of figure 6(b–d).

5Since the factorial k! is a constant that may be disregarded during likelihood maximisation and by using the
log-likelihood the exponential behaviour becomes linear.
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Figure 6: Simulated distributions of the Mk =
∑Ns

j=1 Zkj random variable for Ns = 500 and different
values of pi and δ, along withWk, Poissonian, Gaussian, negative binomial and generalised Poissonian
fit parameters whenever fitting was successful. A sample size of 105 values was used for each Zkj.

In light of the above, apart from the Poissonian approximation that was used in the original and
the modified Gaussian parameters methods, the other viable approximations to the distribution ofMk

are the normal and Wk distributions, since they attain the best fit parameters and were valid for the
whole studied parameter range, which includes the Ns, δ and pi values found in the implementation
of sections 4.2–4.4.

Implementation of the likelihood maximisation using Wk has been unsuccessful due to lack of
convergence of the optimisation algorithms, which we suspect is caused by a combination of two
factors: poor choice of the initial parameters, particularly the initial guess p

[0]
i of the Newton’s

method described in equation (3.16), and non-smooth behaviour of the functions involved in the fit.
Since the distribution of Mk and in consequence the parameters of a Wk fit are unknown, it is

most likely that the fit parameters chosen are inaccurate. Considering the resulting Wk fits of the
simulations, we have tried to hypothesise models for the pi and δ values of the fit as function of the
initial parameters, but unfortunately were not able to propose a grounded model. We attempted
maximisation by using the initial values, scaled accordingly with Ns, and we also tried changing the
initial Newton’s method guess p

[0]
i so that the resulting mean coincides with NsC(pi). None of these

attempts were successful.
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On the contrary, the normal fit parameters may be estimated since they directly relate to the
Mk distribution mean and variance, which are known (as seen in section 3.3.2). Unfortunately,
the summations involved in the likelihood maximisation procedure (particularly on Vδ and its partial
derivatives) highly increase the number of calculations per iteration. For this reason, implementation
of the likelihood maximisation by using this method was extremely slow computationally: in the order
of hours, as opposed to the other methods which run during few seconds. Naturally, under these
circumstances the method becomes impractical.

Nonetheless, we did perform several likelihood maximisations using this normal approximation
(see section 3.3.2), but the results were worse than the initial prediction. This indicates that the
optimisation algorithms are converging to other local extrema, which was frequent throughout the
implementation of the other methods and corrected through tuning of the number of weighed fan-like
groups, re-scaling of parameters, tuning or switch of the optimisation algorithm and/or other minor
corrections. Unfortunately, performing these corrections was impractical due to the high time scales
required to perform each optimisation.

5 Conclusions and outlook

We have successfully implemented the likelihood-based maximisation method introduced by Veberic
to achieve gluing of BRL data, improving the procedure proposed by manufacturers. We improve the
χ2 and the maximum prediction residuals of our gluing fit by up to a factor of 25 and 5, respectively.

Additionally, we have improved and expanded the statistical description of dead-time and elec-
tronic noise, which I believe to be an important contribution to the field. Some of these improvements
have been successfully implemented and yield similar results to the method by Veberic. Conveniently,
the improved algorithm allows for optimisation of the electronic noise parameter γ2, which was not
possible with Veberic’s method. In particular, we have noticed that the analogue and photon-counting
variances are correlated, which implies that the assumption made by Veberic of a constant analogue
signal variance, independent of pi, is incorrect. Nonetheless, the results obtained indicate that for
the BRL data sets Veberic’s assumption can be considered a reasonable approximation, since the
correlated fluctuations due to the input photons do not have a significant effect on the variance of
the signals in comparison to the electronic noise.

Since maximum-likelihood estimation does not minimise fit residuals, but maximises the proba-
bility of observing the data under an assumed statistical model, it is consistent to obtain fit residuals
with Veberic’s method that are not optimal if and where the assumed model is inaccurate. In our
analysis, we have found that the worst predictions lie in the transition region between analogue and
photon counting where the dead-time effects become significant, but the signal does not yet saturate.
This is to be expected, since the Poissonian model employed by Veberic fails to account for the
under-dispersion caused by the dead-time count losses.

For this reason, in this thesis, we have studied different possibilities to introduce a complete sta-
tistical description of the dead time process using the Wk distribution instead of the Poissonian. We
were unable to formally derive the necessary probability distribution of the sumMk ofWk-distributed
random variables, although we have shown through simulations that the normal and Wk distributions
are good approximations for the relevant parameter range.

The main limitations of the new methods are computational, and the following optimisation
considerations need be considered:

• The choice of optimisation algorithms and initial parameters had great influence on the com-
putation time and convergence. In particular, re-scaling and iterative initialisation of fit pa-
rameters are crucial to achieve satisfactory fits to the simulated probability distribution of Mk.
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• The used optimisation algorithms have not been provided with an analytically calculated Ja-
cobian to find the extrema and hence make numerical approximations by slightly modifying
parameters. This procedure assumes that functions to be optimised are smooth, which is not
the case for the Wk distribution.

• The accurate descriptions of dead time, particularly when involving the variance Vδ of Wk and
its partial derivatives, increase the number of calculations per iteration significantly, which
causes some models to become impractical due to computation times of the order of hours on
a single 2.2GHz CPU.

I believe that our contributions to the description of dead time and further studies in this direction
will allow for improvements on the description of dead-time affected acquisition systems, not only in
LIDARs but also in other fields.
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A Appendix

A.1 Mathematical expressions

Here we present the longer mathematical expressions, which we computed, that were not included
in the text:

A.1.1 Deviance derivatives from section 3.2.1

We have computed the first two partial derivatives of Di with respect to pi and obtained:

∂Di

∂pi
=

∂G

∂pi
− 2mi

(1 + δpi)pi
+

2

(1 + δpi)
2 , (A.1)

∂2Di

∂pi2
=

∂2G

∂pi2
+

2 δmi

(1 + δpi)
2pi

− 4 δ

(1 + δpi)
3 +

2mi

(1 + δpi)p2i
, (A.2)

where

∂G

∂pi
= −(αpi + β − ai)

2α2ε2

(γ2 + ε2α2pi)
2 +

α2ε2 + 2 (αpi + β − ai)α

γ2 + ε2α2pi
, (A.3)

∂2G

∂pi2
=

2 (αpi + β − ai)
2α4ε4

(γ2 + ε2α2pi)
3 − (α2ε2 + 4 (αpi + β − ai)α)α

2ε2

(γ2 + ε2α2pi)
2 +

2α2

γ2 + ε2α2pi
. (A.4)

A.1.2 Wk derivatives from section 3.2.2

We have computed the first two partial derivatives of Wk with respect to pi.
Denoting k ≡ mi and defining Sk(x) := U(x) [Q(k, x) + kδPk(x)], we obtain:

∂Wk

∂pi
= − 1

(1 + δpi)
2 [Sk−1(tk−1)− 2Sk(tk) + Sk+1(tk+1) + Λk] (A.5)

where

Λk := δ ·∆k − (1 + δpi)
∂∆k

∂pi
=


0 if k ≤ K − 1,

1 if k = K,

−1 if k = K + 1.

(A.6)

Defining Tk(x) := U(x) k(1− kδ)Pk(x), we obtain:

∂2Wk

∂pi2
= − 2δ

1 + δpi

∂Wk

∂pi
+

1

pi (1 + δpi)
[Tk−1(tk−1)− 2Tk(tk) + Tk+1(tk+1)] . (A.7)

Expressions (A.5)-(A.7) are non-trivial to obtain and the process we followed to deduce them is
included in appendix A.2.
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A.1.3 Deviance derivatives from section 3.3.2

∂Di

∂pi
=

∂G

∂pi
+

2
(
mi − pi

δpi+1

)(
δpi

(δpi+1)2
− 1

δpi+1

)
Vδ

−

(
mi − pi

δpi+1

)2
V 2
δ

∂Vδ

∂pi
+

1

Vδ

∂Vδ

∂pi
(A.8)

∂2Di
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δpi
(δpi+1)2

− 1
δpi+1
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Vδ

−
4
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)(
δ2pi
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− δ
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−
4
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mi − pi

δpi+1

)(
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(δpi+1)2
− 1

δpi+1
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V 2
δ

∂Vδ

∂pi
+

2
(
mi − pi

δpi+1

)2
V 3
δ

(
∂Vδ

∂pi

)2

−

(
mi − pi

δpi+1

)2
V 2
δ

∂2Vδ

∂pi2
− 1

V 2
δ

(
∂Vδ

∂pi

)2

+
1

Vδ

∂2Vδ

∂pi2
(A.9)

We hence need to compute the first two derivatives of Vδ(pi) with respect to pi:

Denoting k ≡ mi and defining S̃k(x) := [Q(k, x) + kδPk(x)], we obtain:

∂Vδ

∂pi
= − 2

(1 + δpi)
2

[
K∑
k=0

S̃k(tk) + Λ̃

]
, (A.10)

where

Λ̃ = 2C(pi)− 2K − 1. (A.11)

Defining T̃k(x) := k(1− kδ)Pk(x), we obtain:

∂2Vδ

∂pi2
= − 2δ

1 + δpi

∂Vδ

∂pi
+

2

pi (1 + δpi)

K∑
k=0

T̃k(tk)−
4

(1 + δpi)4
. (A.12)

Expressions (A.10)-(A.12) are non-trivial to obtain and the process we followed to deduce them
is included in appendix A.2.

A.2 Mathematical derivations

Here we include details of the mathematical derivations, which we computed, of some results pre-
sented in the text.

A.2.1 Wk derivatives

Here is the process we followed to compute the derivatives of Wk:
• First derivative:
Differentiating equation (2.3) yields:

∂Wk

∂pi
= − δ

(1 + δpi)2
[Rk−1−2Rk+Rk+1+∆k]+

1 + δpi
(1 + δpi)2︷ ︸︸ ︷

1

1 + δpi

[
∂Rk−1

∂pi
− 2

∂Rk

∂pi
+

∂Rk+1

∂pi
+

∂∆k

∂pi

]
(A.13)
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Let us first differentiate Rk:
From the definition of tk, we have that ∂tk/∂pi = tk/pi = 1− kδ.
Recall the definition Q(k, tk) = Γ(k, tk)/Γ(k, 0), where Γ(k, x) =

∫∞
x

uk−1e−udu. From the Leibniz
integral rule,

∂Γ(k, x)

∂x
= −xk−1e−x. (A.14)

We may now differentiate Q(k, tk) by using the chain rule and (A.14):

∂Q(k, tk)

∂pi
=

1

Γ(k)

[
∂Γ(k, tk)

∂tk

∂tk
∂pi

]
= −tk

ke−tk

piΓ(k)
= − tk

ke−tk

pi(k − 1)!
= −kPk(tk)

pi
, (A.15)

where we have used that Γ(k) = (k − 1)! for k a positive integer and recalled the definition
Pk(tk) = tk

ke−tk/k!.
We may also differentiate Pk(tk) by using the chain rule:

∂Pk(tk)

∂pi
=

∂Pk(tk)

∂tk

∂tk
∂pi

=
tk

ke−tk

pi(k − 1)!
− tk

k+1e−tk

pik!
=

kPk(tk)

pi
− tkPk(tk)

pi
. (A.16)

We may now differentiate Rk by using (A.15) and (A.16):

∂Rk

∂pi
= U(tk)

∂

∂pi
[(k − tk)Q(k, tk) + kPk(tk)]

= U(tk)

[
−tk
pi
Q(k, tk) + (k − tk)

∂Q(k, tk)

∂pi
+ k

∂Pk(tk)

∂pi

]
= U(tk)

[
−tk
pi
Q(k, tk)−

k2Pk(tk)

pi
+

ktkPk(tk)

pi
+

k2Pk(tk)

pi
− ktkPk(tk)

pi

]
= −U(tk)

tk
pi
Q(k, tk)

= −U(tk)(1− kδ)Q(k, tk).

(A.17)

Note that we have considered ∂U(tk)/∂pi = 0 for simplicity to avoid a discontinuity at tk = 0,
since the derivative of the Heaviside function is a Dirac delta, which is an extreme case that may be
resolved in the implementation.

Let us now differentiate ∆k. From equation (2.4), we have that:

∂∆k

∂pi
=


0 if k ≤ K − 1,

(K + 1)δ − 1 if k = K,

1−Kδ if k = K + 1.

(A.18)
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Substituting (A.17) and (A.18) into (A.13) and using the definition of Rk yields:

∂Wk

∂pi
= − δ

(1 + δpi)2

[
U(tk−1) [(k − 1− tk−1)Q(k − 1, tk−1) + (k − 1)Pk−1(tk−1)]

− 2U(tk) [(k − tk)Q(k, tk) + kPk(tk)]

+ U(tk+1) [(k + 1− tk+1)Q(k + 1, tk+1) + (k + 1)Pk+1(tk+1)] + ∆k

]
− 1 + δpi

(1 + δpi)2

[
U(tk−1)(1− (k − 1)δ)− 2U(tk)(1− kδ) + U(tk+1)(1− (k + 1)δ) +

∂∆k

∂pi

]
= · · · = − 1

(1 + δpi)2

[
U(tk−1) [Q(k − 1, tk−1) + (k − 1)δPk−1(tk−1)]

− 2U(tk) [Q(k, tk) + kδPk(tk)] + U(tk+1) [Q(k + 1, tk+1) + (k + 1)δPk+1(tk+1)]

+ δ∆k − (1 + δpi)
∂∆k

∂pi

]
.

(A.19)
Defining Sk(x) := U(x) [Q(k, x) + kδPk(x)] and

Λk := δ ·∆k − (1 + δpi)
∂∆k

∂pi
=


0 if k ≤ K − 1,

1 if k = K,

−1 if k = K + 1,

(A.20)

we obtain:
∂Wk

∂pi
= − 1

(1 + δpi)
2 [Sk−1(tk−1)− 2Sk(tk) + Sk+1(tk+1) + Λk] , (A.21)

as we wanted to show.
• Second derivative:

Differentiating (A.21) yields:

∂2Wk

∂pi2
=

2δ

(1 + δpi)3
[Sk−1 − 2Sk + Sk+1 + Λk]−

1

(1 + δpi)2

[
∂Sk−1

∂pi
− 2

∂Sk

∂pi
+

∂Sk+1

∂pi
+

S
S
SSw0

∂Λk

∂pi

]

= − 2δ

1 + δpi

∂Wk

∂pi
− 1

(1 + δpi)2

[
∂Sk−1

∂pi
− 2

∂Sk

∂pi
+

∂Sk+1

∂pi

]
.

(A.22)
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We may differentiate Sk by using (A.15) and (A.16):

∂Sk

∂pi
= U(tk)

[
∂Q(k, tk)

∂pi
+ kδ

∂Pk(tk)

∂pi

]
= U(tk)

[
−kPk(tk)

pi
+

(
1− tk

pi

)(
kPk(tk)

pi
− tkPk(tk)

pi

)]
= U(tk)

[
−tkPk(tk)

pi
− ktkPk(tk)

pi2
+

tk
2Pk(tk)

pi2

]
= U(tk)

tk
k+1e−tk

pi(k − 1)!

[
−1

k
− 1

pi
+

tk
kpi

]
= −U(tk)

tk
k+1e−tk

pi(k − 1)!

1 + δpi
pi

= −U(tk)Pk(tk)k(1− kδ)
1 + δpi

pi
,

(A.23)

where we used that kδ = 1− tk/pi and again we considered ∂U(tk)/∂pi = 0.
Defining Tk(x) := U(x) k(1− kδ)Pk(x) and substituting (A.23) into (A.22) yields:

∂2Wk

∂pi2
= − 2δ

1 + δpi

∂Wk

∂pi
+

1

pi (1 + δpi)
[Tk−1(tk−1)− 2Tk(tk) + Tk+1(tk+1)] , (A.24)

as we wanted to show.

A.2.2 Vδ derivatives

Here is the process we followed to compute the derivatives of Vδ:
The derivatives of Vδ are computed in a similar way to the derivatives of Wk, and so we will be

concise and use similar notation to show the analogy.
• First derivative:

Defining R̃k = Rk/U(tk) = [(k − tk)Q(k, tk) + kPk(tk)], we have that:

Vδ =
2

1 + δpi

K∑
k=0

R̃k +H(µ−K) (A.25)

The derivative of R̃k is clearly given by:

∂R̃k

∂pi
=

1

U(tk)

∂Rk

∂pi
= −(1− kδ)Q(k, tk). (A.26)

Recalling that H(x) = x(1− x) and µ = pi/(1 + δpi),

H(µ−K) = (µ−K) (1− µ+K) (A.27)

Notice now that
∂µ

∂pi
=

1

(1 + δpi)2
(A.28)

and therefore:
∂H

∂pi
=

1

(1 + δpi)2
(1− 2µ+ 2K) (A.29)
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We may now differentiate Vδ and we obtain:

1

2

∂Vδ

∂pi
=

1 + δpi
(1 + δpi)2

K∑
k=0

∂R̃k

∂pi
− δ

(1 + δpi)2

K∑
k=0

R̃k +
∂H

∂pi

= − 1 + δpi
(1 + δpi)2

K∑
k=0

(1− kδ)Q(k, tk)−
δ

(1 + δpi)2

K∑
k=0

[(k − tk)Q(k, tk) + kPk(tk)] +
∂H

∂pi

= · · · = − 1

(1 + δpi)2

K∑
k=0

[Q(k, tk) + kδPk(tk)] +
∂H

∂pi

(A.30)

Defining S̃k(x) := Sk(x)/U(x) = [Q(k, x) + kδPk(x)] we obtain:

1

2

∂Vδ

∂pi
= − 1

(1 + δpi)2

K∑
k=0

S̃k +
∂H

∂pi
(A.31)

Finally, defining

Λ̃ := 2µ− 2K − 1 = 2C(pi)− 2K − 1 (A.32)

we obtain:

∂Vδ

∂pi
= − 2

(1 + δpi)
2

[
K∑
k=0

S̃k(tk) + Λ̃

]
, (A.33)

as we wanted to show.
• Second derivative:

Differentiating (A.31) yields:

1

2

∂2Vδ

∂pi2
=

2δ

(1 + δpi)3

K∑
k=0

S̃k −
1

(1 + δpi)2

K∑
k=0

∂S̃k

∂pi
+

∂2H

∂pi2
(A.34)

The derivative of S̃k is clearly given by:

∂S̃k

∂pi
=

1

U(tk)

∂Sk

∂pi
= −Pk(tk)k(1− kδ)

1 + δpi
pi

(A.35)

The second derivative of H is given by:

∂2H

∂pi2
= − 2δ

(1 + δpi)3
(1− 2µ+ 2K)− 2

(1 + δpi)4
(A.36)

Defining T̃k(x) := k(1− kδ)Pk(x), we have that:

1

2

∂2Vδ

∂pi2
=

2δ

(1 + δpi)3

K∑
k=0

S̃k +
1

pi(1 + δpi)

K∑
k=0

T̃k +
∂2H

∂pi2
(A.37)

Substituting (A.36) into (A.37), simplifying and rearranging terms yields:

∂2Vδ

∂pi2
= − 2δ

1 + δpi

∂Vδ

∂pi
+

2

pi (1 + δpi)

K∑
k=0

T̃k(tk)−
4

(1 + δpi)4
. (A.38)

as we wanted to show.
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A.3 Code

The gluing scripts we developed have over 10 000 lines of code, which in consequence will not be
included here. For further information, kindly contact oscarporqueras@gmail.com.

A.4 Authorship and word count declaration

I, Òscar Porqueras León, hereby declare that the thesis titled “Maximum likelihood gluing of simulta-
neous analogue and photon counting LIDAR measurements” and the work presented in it is my own,
other than the material that is result of joint research or other sources which are fully acknowledged
and all quotations properly identified. I ensure that this project submitted for assessment is my own
and it is expressed in my own words. A list of the references employed is also included.

The total count of words from the introduction to the conclusions is 8018, using Microsoft Word’s
word counter after having converted the file from pdf. There are 7 figures considered as 200 words
each. There are 29 equations in “math display” (not inline) which were converted to images by
Microsoft Word, considered as 20 words each.

The total of words computed using the proposed counting procedure therefore is

8018words + 7 · 200 words

figure
+ 29 · 20 words

equation
= 8018 + 1400 + 580 = 9998,

which is within the limits of this type of work.
Signed:

µ.
Òscar Porqueras León
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